裴波那契数列是怎样的数列?有什么特别的地方

2024-05-20

1. 裴波那契数列是怎样的数列?有什么特别的地方

一、斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........这个数列从第3项开始,每一项都等于前两项之和。
二、斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。
1、随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…
2、斐波那契数列前几项的平方和可以看做不同大小的正方形,由于斐波那契的递推公式,它们可以拼成一个大的矩形。这样所有小正方形的面积之和等于大矩形的面积。则可以得到如下的恒等式:


3、斐波那契数列的整除性与质数生成性;每3个连续的数中有且只有一个被2整除,每4个连续的数中有且只有一个被3整除,每5个连续的数中有且只有一个被5整除,每6个连续的数中有且只有一个被8整除,每7个连续的数中有且只有一个被13整除..…

扩展资料:
斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。
可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题,在FOX热播美剧《Fringe》中更是无数次引用,甚至作为全剧宣传海报的设计元素之一。
参考资料:百度百科 斐波那契数列

裴波那契数列是怎样的数列?有什么特别的地方

2. 什么是裴波那契数列

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……   这个数列从第三项开始,每一项都等于前两项之和。
斐波那契数列通项公式见图

3. 裴波那契数列

如果设所求的数列通项为a(n),那么由于这个数列的相邻两项的差为裴波那契数列,所以我们可以得到弟推式:a(n+1)-a(n)=f(n).由这个弟推公式我们可以得到以下一些式子:a(2)-a(1)=f(1)
a(3)-a(2)=f(2)
a(4)-a(3)=f(3)
.............
a(n-1)-a(n-1)=f(n-1)
a(n)-a(n-1)=f(n-1)
将功赎罪以上式子左右对加我们可以很容易地得到:
a(n)-a(1)=f(1)+f(2)+...+f(n-1)=s(n-1)(是斐波那契数列的前n-1项和),那么至此,我们的问题就转化为了求斐波拉契数列的前n项和的问题了,下面将给出斐裴波那契数列的前n项和的过程.
我们早已知道,对于斐波那契数列f(n)来说我们有这样一个递推公式,即:f(n+1)=f(n)+f(n-1)(n.2),由这个式子的们可以得到:f(n-1)=f(n+1)-f(n)s,由此我们可以得到:
f(1)=f(3)-f(2)
f(2)=f(4)-f(3)
f(3)=f(5)-f(4)
.............
f(n-1)=f(n+1)-f(n)
f(n)=f(n+2)-f(n+1)
将以上n个式了左右对加可以得到:
f(1)+f(2)+f(3)+.....+f(n)=f(n+2)-f(2)=f(n+2(-1=s(n).这个式子说明斐波那契数列的前n项和恰好为斐波那契数列的第n+2项减1.
现在,斐波那契数列的求和问题我们也解决了,
由前面得到的那个式子可知a(n)-a(1)=s(n-1),由于a(1)=0.所以:a(n)-0=a(n)=s(n-1)=f(n+1)-1={[(1+√5)/2]^(n+1)-[(1-√5)/2]^(n+1)}/√5
-1

裴波那契数列

4. 什么是裴波拉契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........
自然中的斐波那契数列
这个数列从第3项开始,每一项都等于前两项之和。
斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

5. 裴波那契数列的规律是什么?

解答

从第三项起,前两项的和为后面的一项,即:a(n+2)=a(n+1)+an

裴波那契数列的规律是什么?

6. 数列,什么是契波数列,斐波拉契数列,斐切那波数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

7. 裴波那契数列第 n个数怎么表示


裴波那契数列第 n个数怎么表示

8. 裴波那契数列的计算公式?

方法一:利用特征方程(线性代数解法)   线性递推数列的特征方程为:   X^2=X+1   解得   X1=(1+√5)/2,,X2=(1-√5)/2。   则F(n)=C1*X1^n + C2*X2^n。   ∵F(1)=F(2)=1。   ∴C1*X1 + C2*X2。   C1*X1^2 + C2*X2^2。   解得C1=√5/5,C2=-√5/5。   ∴F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)。  
 方法二:待定系数法构造等比数列1(初等代数解法)   设常数r,s。   使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。   则r+s=1, -rs=1。   n≥3时,有。   F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。   F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。   F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。   ……   F(3)-r*F(2)=s*[F(2)-r*F(1)]。   联立以上n-2个式子,得:   F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。   ∵s=1-r,F(1)=F(2)=1。   上式可化简得:   F(n)=s^(n-1)+r*F(n-1)。   那么:   F(n)=s^(n-1)+r*F(n-1)。   = s^(n-1) + r*s^(n-2) + r^2*F(n-2)。   = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。   ……   = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)。   = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。   (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。   =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。   =(s^n - r^n)/(s-r)。   r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。   则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。 
  方法三:待定系数法构造等比数列2(初等代数解法)   已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。   解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。   得α+β=1。   αβ=-1。   构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。   所以。   an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。   an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。   由式1,式2,可得。   an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。   an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。   将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。