潘建伟及其团队研发了什么量子技术

2024-05-08

1. 潘建伟及其团队研发了什么量子技术

中国科学技术大学潘建伟院士团队近日成功研制出全球超导量子比特数量最多的量子计算原型机 “祖冲之号”,宣告全球最大量子比特数的超导量子体系的诞生。

量子计算机原型机发布后,我国首个可操纵的超导量子计算机体系“祖冲之号”问世。该成果将为促进中国在超导量子系统上实现量子优越性奠定了技术基础,也为后续具有重大实用价值的通用量子计算的研发提供支持。中国科学技术大学潘建伟院士团队近日成功研制出全球超导量子比特数量最多的量子计算原型机 “祖冲之号”,宣告全球最大量子比特数的超导量子体系的诞生。这篇名为《在可编程二维62比特量子处理器上的量子行走》的论文5月7日发表在《科学》杂志。

量子计算机是全球科技前沿的重大挑战之一,也是世界各国角逐的焦点。超导量子计算已成为最具希望的候选者之一,它的核心目标是增加 “可操纵” 的量子比特数量,通过提升操纵精度来实现落地应用。祖冲之号” 可操纵的超导量子比特多达62个,而此前谷歌实现 “量子优越” 的“悬铃木”53个量子比特。研究团队在大尺度晶格上首次实现了量子行走的实验观测,并实现对量子行走构型的精准调控,构建了可编程的双粒子量子行走。

潘建伟及其团队研发了什么量子技术

2. 潘建伟及其团队研发了什么量子技术

潘建伟及其团队研发了量子计算机技术。
1、科研综述
2022年8月,中国科学技术大学潘建伟及其同事包小辉、张强等,将长寿命冷原子量子存储技术与量子频率转换技术相结合,采用现场光纤在相距直线距离12.5公里的独立量子存储节点间建立纠缠。

2022年,中国科学技术大学潘建伟团队与上海技物所、新疆天文台等单位合作,在国际上首次实现了百公里级的自由空间高精度时间频率传递实验时间传递稳定度达到飞秒(千万亿分之一秒)量级,可满足目前最高精度光钟的时间传递要求。

2、学术论著
根据2022年7月中国科学技术大学官网显示,潘建伟在《Nature》《Science》《PNAS》和《Physical Review Letters》等重要国际学术期刊上发表论文180余篇,并受国际权威综述期刊《Reviews of Modern Physics》邀请先后撰写关于多光子纠缠实验和现实条件下量子通信安全性的综述论文。
3、成果奖励
根据2022年7月中国科学技术大学官网显示,潘建伟曾获国家自然科学一等奖等奖项。

3. 潘建伟团队实现了独立量子存储器间的远距离纠缠,量子储蓄技术难度有多大?

中国科学技术大学潘建伟及其同事包小辉、张强等,将长寿命冷原子量子存储技术与量子频率转换技术相结合,采用现场光纤在相距直线距离12.5公里的独立量子存储节点间建立纠缠。潘建伟团队实现了独立量子存储器间的远距离纠缠,量子储蓄技术难度有多大?

1、量子储蓄技术难度有多大?
研究结果表明,与纠缠光子相比,多节点之间的原子–光子纠缠可能更适合量子纠缠的远距离传输。本项研究演示了两个相距 50 公里的量子存储器的纠缠,这一距离足以连接两座城市,并比之前报道的距离要远得多,或为实现多节点、远距离纠缠铺平了道路,有助于量子互联网的开发。就像计算机中的硬盘驱动器一样,量子储存器存储量子信息。它们是构建量子互联网的必要部分,并将促进实现超安全的量子通信,允许远程量子计算机一起工作。
2、量子储蓄技术的实用价值
研究团队采用激光冷却的铷原子进行量子存储,其光子波长为795纳米,并不适合在长光纤内传输。采用由济南量子研究院研制的周期极化铌酸锂波导,团队将光子波长转移至1342纳米,极大地降低了光子在长光纤内的衰减。该工作的另一难点在于长寿命量子存储,存储寿命需超过光子传输时间。为此,团队设计了一个新型的光与原子纠缠产生方案,在获得长存储寿命的同时,产生的光子比特编码在时间自由度上,非常适合频率变换以及远距离传输。
3、中国国际量子的地位
本次成果,则确立了中国在国际量子计算研究中的第一方阵地位,并将为解决具有重大实用价值问题的规模化量子模拟机奠定基础。通过对规模化多体量子体系的精确制备、操控与探测,研制可相干操纵数百个量子比特的量子模拟机,从而解决超级计算机无法胜任的难题,如量子化学、新材料设计、优化算法等。不过,对于本次成果的优越性,潘建伟说:“这是一个动态过程,所有领先都只是暂时的。”

后记:研究团队成功实现了独立存储器间的远距离纠缠。该工作为后续构建多节点量子网络原型系统、进行量子物理检验、探索器件无关量子密钥分发等应用奠定了基础。

潘建伟团队实现了独立量子存储器间的远距离纠缠,量子储蓄技术难度有多大?

4. 潘建伟团队实现量子优越性:特定问题比顶级超算快百万亿倍

 在200秒时间内,76个光子穿过中国科学技术大学潘建伟团队精心构筑的光学网络,完成了5000万个样本的高斯玻色采样。而同样一道数学题交给世界上最顶尖的超级计算机,需要6亿年。
   这个于12月4日揭开面纱的光量子计算模型机名为“九章”,是世界上第二次达到加州理工学院教授普雷斯基尔提出的“量子霸权”(Quantum supremacy)标准的量子计算实验。“量子霸权”亦称为“量子优越性”(Quamtum advantage),即量子计算机在特定问题上超越世界上性能最好的经典计算机。
   事实上,中科院院士潘建伟早在9月份的西湖大学公开课演讲上就曾“剧透”过这一成果。他当时表示:“近期已经完成50个光子的高斯玻色采样,按照现在的初步估计和数据分析,应该能够比谷歌的量子优越性大概快100万倍。”
   世界上首个宣布实现量子优越性的是美国谷歌公司。2019年,谷歌使用了53个超导量子比特制作了一台名为Sycamore的处理器,运行随机量子线路进行采样,耗时约200秒可进行100万次采样。而最强超算、 美国橡树岭国家实验室Summit计算机得到同样结果需要花上一年,差距约十亿(10的9次方)倍。
   而这次,潘建伟团队构筑的“九章”与顶级超算的差距超过了百万亿(10的14次方)倍。
   当然,潘建伟团队的光量子计算机和谷歌的超导量子计算机路径不同,任务也各有所长。玻色采样和随机路线采样分别是两者最擅长的问题,而且目前还不具备实际应用意义。
   可以说,量子优越性是以量子计算机之长,比超算之短的“表演赛”,并不意味着经典计算机就要被淘汰了。不过,量子优越性确实是关键的里程碑,为未来量子计算机走向实用性问题奠定基础。
   实现量子优越性也需许多理论与工程难题,相关知识技术更是具备丰富的潜在价值。那么,玻色采样究竟是一个怎样的问题?潘建伟团队如何取得了此次突破?
   相关论文题为《基于光子的量子计算优越性》(Quantum computational advantage using photons)、于北京时间12月4日03:00发表在世界顶级学术期刊《科学》(Science)上。
   论文摘要显示,研究团队将50全同单模压缩态输入100模式超低损耗干涉线路,利用100个高效单光子探测器进行高斯玻色采样,输出态空间维度达到了10的30次方,采样速率比最先进的超级计算机要快上10的14次方倍。
    什么是玻色采样? 
   我们知道,在设计建筑、飞机的时候,工程师们需要用计算机来进行各种计算和模拟。而如果我们要研究的是微观世界的“量子建筑”呢?
   其中微观粒子复杂的变化和相互作用,远远超过了经典计算机的能力范围。最好,是用量子的方式来模拟量子问题。
   这就是著名物理学家理查德·费曼在1980年代提出的量子计算机构想:“自然不是经典的,如果你想对自然进行模拟,那么你最好把计算机给量子化。”
   大家普遍认为,玻色采样就是这样一个适于量子计算机发挥的任务。它是将非经典光输入线性光学网络后,用单光子探测器来探测输出光子的数量、路径和纠缠态,其结果是高度随机的。
   我们可以借助研究随机分布的“高尔顿钉板”实验来理解玻色采样。
   一颗直径略小于两颗钉子间距的小圆球在钉板上向下滚落,碰到钉子后皆以1/2的概率向左或向右滚下,接着又碰到下一层钉子。如此继续下去,直到从底板的一个出口滚出为止。把许多同样的小球不断从入口处放下,只要球的数目相当大,它们在底板将堆成近似于正态的密度函数图形,即中间高,两头低,呈左右对称的古钟型。
   而在玻色采样问题上,全同光子就是小球,分束器就是钉子,线性光学网络就是钉板。当一束光通过分束器时会被分成两束强度较低的光,一束透射,另一束反射。计算在n个全同玻色子经过网络后,特定一种输出结果的概率(例如输入3个光子后,分别在1号、3号、4号“出口”输出),就是玻色采样问题。
   科学家们计算后认为,该问题的经典最优解法随着光子数的增加求解步数呈指数上涨。光量子计算机在中小规模下就可以打败超级计算机。
   那么,谷歌超导量子计算所进行的随机线路采样也是一个能充分展现量子优越性的问题,光子玻色采样相较之下有何特别?
   潘建伟团队论文引述了一种观点,即改进经典算法后,超算只需要数天就能像Sycamore一样进行100万次随机线路采样。这样的话,如果样本数量足够大,比如到了10的10次方的话,入股有足够的存储空间,量子优势将被逆转。
   而光量子计算机在玻色采样上就不存在这种依赖于样本大小的漏洞,因为经典算法针对玻色采样存在一个固定的限制。除此之外,光子进行玻色采样可以在室温下工作,不容易受到干扰。
    攻克的关卡 
   根据实际需要,玻色取样逐渐衍生出了各种变体。潘建伟团队此次采用了一种高斯玻色采样变体,它在一些图形问题和量子化学领域有着潜在的应用。高斯玻色采样使用所有处于压缩态的光子,且允许使用更高的抽运功率,使得其同样在事件发生率上具有指数优势。
   尽管这是一个为光量子计算机量身定制的挑战,如何将玻色采样的规模放大到一个计算上有意义的区间仍有许多挑战。
   论文提到了研究团队需要攻克的五大“关卡”:
   首先,它需要单模压缩态同时具备足够高的压缩参数、光子全同性和采集效率;
   其次,它需要大型干涉仪同时具备完全连通性、矩阵随机性、近似完美波包重叠和相位稳定,以及近统一传输速率;
   第三,它需要对单模压缩态中的所有光子数状态实现相位控制;
   第四,它需要高效探测器采集输出分布;
   最后,从巨大的输出态空间获得的稀少样本需要被验证,并且表现要与超级计算机形成比较。
   为此,潘建伟光量子计算团队已经进行了多年的“打怪升级”。2013年,他们在国际上首创量子点脉冲共振激发,解决了单光子源的确定性和高品质这两个基本问题;2016年, 产生了国际最高效率的全同单光子源,并于2017年初步应用于构建超越早期经典计算能力的针对波色取样问题的光量子计算原型机,其取样速率比国际上当时的实验提高24000多倍。
   2019年,中国科大研究组在实验上同时解决了单光子源所存在的混合偏振和激光背景散射这两个最后的难题:成功研制出了确定性偏振、高纯度、高全同性和高效率的单光子源。在此基础上,他们在国际上首次实现了20光子输入60 60模式干涉线路的玻色取样量子计算,输出态空间维数比国际同行之前的光量子计算实验高百亿倍,逼近量子优越性,完成了临门一脚的预演。
     校对:张亮亮

5. 潘建伟团队实现50公里远的量子存储器纠缠 超纪录37倍

中国科学技术大学近日演示了两个量子存储器相距50公里的纠缠,为解决大规模量子互联网的关键技术问题提供了思路。此前,两个固定节点之间的量子纠缠始终无法超越1.3公里的距离。
  
 相关论文于2月13日凌晨发表在世界顶级学术期刊、英国《自然》杂志上。中科大教授潘建伟、包小辉、张强为文章的通讯作者。
  
 量子是物理学中不可再分的基本单元,比如,光子就是量子性的,不存在“半个光子”的说法。在这个微观世界里,科学家们发现了许多奇妙的特性,量子通信、量子计算等概念基于此发展起来。
  
 量子纠缠就是其一,爱因斯坦称之为“鬼魅般的远距作用”。处于纠缠态的两个量子不论相距多远都存在一种关联,其中一个量子状态发生改变(比如人们对其进行测量),另一个的状态会瞬时发生相应改变,仿佛“心灵感应”。
  
 虽然理论上是这样,但如果要建成大规模的量子互联网络,保证两个遥远的节点保持这样精妙的纠缠态,仍存在许多技术上的挑战。
  
 自上个世纪70年代以来,物理学家们开始尝试远距离量子纠缠分发,即把处于纠缠态的光子分发到两处。
  
 早在2005年,潘建伟团队就在合肥大蜀山实现了13公里的量子纠缠分发。2012年,该团队又在青海湖实现了首个超过102公里的量子纠缠分发实验。2017年,利用世界首颗量子通信实验卫星“墨子号”,他们创下了世界量子纠缠分发距离的纪录,达到1200千米。
  
 不过,这样的星地量子纠缠分发造成的传输损耗很大,在实际应用上有很大挑战。若要让光子在远距离光纤上传输,也会出现严重的损耗,限制分发的成功率。
  
 论文提到,一个解决方案是,在两个远距离节点上各自制备量子存储器(某种可以储存量子态的物质)和一个光子的纠缠,再把这两个光子传输到一个共同的中间节点。对这两个光子进行适当的测量操作后,就能把原节点上的两个量子存储器投射成远程纠缠态。
  
 此前,国际科学家们曾用原子团簇、原子、金刚石中氮空位色心、离子阱等系统作为量子存储器进行操作,但最好的结果也只有1.3公里。
  
 论文指出,想把纠缠距离拓展到城际规模,存在三个主要的挑战。一是获得“明亮”(即有效)的物质-光子纠缠,二是减少传输损耗,三是实现长距离光纤中稳定的高可见干涉。
  
 针对以上挑战,研究团队利用一种名为腔增强的量子效应来制备明亮的原子团簇和光子纠缠。他们在中科大校园内设置了两个这样的节点,再把两个信使光子通过两条平行的11公里长光纤传输到中间节点——合肥软件园。
  
 为了减少传输期间的光子损耗,研究团队利用量子频率转换技术,将光子从近红外频率转换为适合于电信传输的频率。最后,他们在双光子干涉机制下实现了两个量子节点的纠缠,等于说跨越了22公里。
  
 接下去,中科大团队又更进一步,在单光子干涉机制下,让两个由50公里长光纤连接的节点实现了纠缠,达到了城际尺度。
  
 论文乐观地判断,把更多类似距离的节点连接起来,这个实验就可以拓展成一个量子网络的功能单位,为建立大规模的量子互联网做好了铺垫。

潘建伟团队实现50公里远的量子存储器纠缠 超纪录37倍

最新文章
热门文章
推荐阅读